Show new navigation
On
Columbia Basin Fish and Wildlife Program Columbia Basin Fish and Wildlife Program

Assessment Summary

ISRP Assessment 1991-029-00-ISRP-20101015
Assessment Number: 1991-029-00-ISRP-20101015
Project: 1991-029-00 - Snake River Fall Chinook Research & Monitoring
Review: RME / AP Category Review
Proposal Number: RMECAT-1991-029-00
Completed Date: 12/17/2010
Final Round ISRP Date: 12/17/2010
Final Round ISRP Rating: Meets Scientific Review Criteria
Final Round ISRP Comment:
This ongoing project has collected field data on Snake River fall Chinook salmon spawning activity, juvenile recruitment, survival, and growth for almost two decades, and proposes to continue these studies. The project also manages a very ambitious PIT-tagging program, with almost 400,000 hatchery fall Chinook PIT tagged annually. This project has provided a large portion of the available data on the Snake River fall Chinook Salmon ESU. The data have been used for development of the recovery plan, for planning of the Lyons Ferry hatchery program, and for design of the summer flow augmentation program. The study documented overwintering of juvenile fall Chinook salmon in the hydropower system reservoirs, and contributed to the decision to extend the operation of the juvenile bypass system at Lower Granite Dam later into the fall. This project is a collaborative effort between the USFWS and the USGS, and will provide information essential to NOAA life-cycle modeling efforts. A number of additional Federal and State agencies are involved in data collecting and reporting. The activities funded by this proposal would not duplicate other efforts.

This project is well integrated with other regional RM&E efforts relating to Snake River fall Chinook, as would be expected of a project with a nearly 20-year history. The proposal addresses RPAs in the BiOp, the AMIP, and Council’s draft MERR plan. The 2008 BiOp calls for (continuing) investigations of the early life history of Snake River fall Chinook salmon and of the effects of the hatchery program on natural productivity. The NPCC’s Fish and Wildlife Program calls for research on the effects of predation in the mainstem on juvenile salmonids, as does the Adaptive Management Implementation Plan (AMIP). The AMIP also calls for the development of improved life-cycle and passage models for ESA-listed salmonid stocks. The proposal has easily identifiable objectives and tasks related to these needs.

This was a well-written proposal for a project with an excellent track record of success and accomplishment (e.g., 32 peer-reviewed journal articles) over its long history. Project proponents have made a number of presentations to the ISAB and ISRP over the years in which major findings have been analyzed and discussed. The project has clearly benefited Snake River fall Chinook salmon over the years and will likely continue to do so. In particular, this proposal seems to be especially good at describing how data collection and data analysis/modeling will work together. It is more than a monitoring project. It is truly a combination monitoring and research/modeling effort. Their proposal is thus a well-synthesized effort at data collection and high-level analyses with clear applicability to management. The itemized list of management changes that have resulted from the findings of this study constitutes strong evidence of adaptive management. Their general approach could (and should) be applied to other programs in the Basin.

Some limitations on the extent and reliability of data collected by this project have been resolved (differentiating between natural-origin Fall and Spring Chinook subyearlings and between natural-origin Fall Chinook and hatchery-origin subyearlings), while others have not (inability to tag subyearlings <49 mm, uncertainty about effects of flow on beach-seining efficiency, lack of data on passage of juveniles during winter months).

One of the highlights of the project’s discoveries has been the recognition of a reservoir overwintering life history attribute in some Snake River fall Chinook, and extension of operation of the juvenile bypass systems at the lower Snake dams reflects this new understanding of year-round movement patterns. The research questions have been refined and focused over the years, and are addressing some of the most critical data gaps concerning this ESU.

The technical background and objectives were clearly organized and explained. For each objective, detailed methods are provided. The project relies on standard field sampling methods. Deliverables, work elements, metrics and methods are well described in the proposal. The discussions of population modeling and the approaches to fitting stock-recruitment curves were especially thorough. Project proponents appear well equipped to carry out the work.

Of particular value in this proposed work are their analyses of abundance and growth data with stock recruitment relationships to address the idea of density dependence in supplementation programs. Post supplementation, there has been a significant decrease in smolt size. Hatchery supplementation has been associated with large increases in redd counts, followed by a leveling off/slight decline of natural fish. There are some indications that density dependent factors might be acting as stock size rebuilds. Whether or not density-dependence or other hatchery-wild interactions are occurring may be a contentious issue, but regardless of the outcome, addressing these questions with their long-term data sets is a highly important use of the data, and an appropriate approach for evaluating and shaping other supplementation projects in the basin as well. Results of the analysis should provide a biological basis for recovery goals. The proponents also have a riverine bass predation element to their project that will provide information related to survival. This project is exemplary in that it is making the attempt to truly assess a supplementation program not just through intermediate steps such as more smolts or more redds, but in terms of its ultimate impact on recovery, the wild stock, density effects, and other higher level population dynamics.
First Round ISRP Date: 10/18/2010
First Round ISRP Rating: Meets Scientific Review Criteria
First Round ISRP Comment:

This ongoing project has collected field data on Snake River fall Chinook salmon spawning activity, juvenile recruitment, survival, and growth for almost two decades, and proposes to continue these studies. The project also manages a very ambitious PIT-tagging program, with almost 400,000 hatchery fall Chinook PIT tagged annually. This project has provided a large portion of the available data on the Snake River fall Chinook Salmon ESU. The data have been used for development of the recovery plan, for planning of the Lyons Ferry hatchery program, and for design of the summer flow augmentation program. The study documented overwintering of juvenile fall Chinook salmon in the hydropower system reservoirs, and contributed to the decision to extend the operation of the juvenile bypass system at Lower Granite Dam later into the fall. This project is a collaborative effort between the USFWS and the USGS, and will provide information essential to NOAA life-cycle modeling efforts. A number of additional Federal and State agencies are involved in data collecting and reporting. The activities funded by this proposal would not duplicate other efforts. This project is well integrated with other regional RM&E efforts relating to Snake River fall Chinook, as would be expected of a project with a nearly 20-year history. The proposal addresses RPAs in the BiOp, the AMIP, and Council’s draft MERR plan. The 2008 BiOp calls for (continuing) investigations of the early life history of Snake River fall Chinook salmon and of the effects of the hatchery program on natural productivity. The NPCC’s Fish and Wildlife Program calls for research on the effects of predation in the mainstem on juvenile salmonids, as does the Adaptive Management Implementation Plan (AMIP). The AMIP also calls for the development of improved life-cycle and passage models for ESA-listed salmonid stocks. The proposal has easily identifiable objectives and tasks related to these needs. This was a well-written proposal for a project with an excellent track record of success and accomplishment (e.g., 32 peer-reviewed journal articles) over its long history. Project proponents have made a number of presentations to the ISAB and ISRP over the years in which major findings have been analyzed and discussed. The project has clearly benefited Snake River fall Chinook salmon over the years and will likely continue to do so. In particular, this proposal seems to be especially good at describing how data collection and data analysis/modeling will work together. It is more than a monitoring project. It is truly a combination monitoring and research/modeling effort. Their proposal is thus a well-synthesized effort at data collection and high-level analyses with clear applicability to management. The itemized list of management changes that have resulted from the findings of this study constitutes strong evidence of adaptive management. Their general approach could (and should) be applied to other programs in the Basin. Some limitations on the extent and reliability of data collected by this project have been resolved (differentiating between natural-origin Fall and Spring Chinook subyearlings and between natural-origin Fall Chinook and hatchery-origin subyearlings), while others have not (inability to tag subyearlings <49 mm, uncertainty about effects of flow on beach-seining efficiency, lack of data on passage of juveniles during winter months). One of the highlights of the project’s discoveries has been the recognition of a reservoir overwintering life history attribute in some Snake River fall Chinook, and extension of operation of the juvenile bypass systems at the lower Snake dams reflects this new understanding of year-round movement patterns. The research questions have been refined and focused over the years, and are addressing some of the most critical data gaps concerning this ESU. The technical background and objectives were clearly organized and explained. For each objective, detailed methods are provided. The project relies on standard field sampling methods. Deliverables, work elements, metrics and methods are well described in the proposal. The discussions of population modeling and the approaches to fitting stock-recruitment curves were especially thorough. Project proponents appear well equipped to carry out the work. Of particular value in this proposed work are their analyses of abundance and growth data with stock recruitment relationships to address the idea of density dependence in supplementation programs. Post supplementation, there has been a significant decrease in smolt size. Hatchery supplementation has been associated with large increases in redd counts, followed by a leveling off/slight decline of natural fish. There are some indications that density dependent factors might be acting as stock size rebuilds. Whether or not density-dependence or other hatchery-wild interactions are occurring may be a contentious issue, but regardless of the outcome, addressing these questions with their long-term data sets is a highly important use of the data, and an appropriate approach for evaluating and shaping other supplementation projects in the basin as well. Results of the analysis should provide a biological basis for recovery goals. The proponents also have a riverine bass predation element to their project that will provide information related to survival. This project is exemplary in that it is making the attempt to truly assess a supplementation program not just through intermediate steps such as more smolts or more redds, but in terms of its ultimate impact on recovery, the wild stock, density effects, and other higher level population dynamics.

Documentation Links:
Proponent Response: